# Launch Into Angles

# The Bridge Across the Bay

The Sunshine Skyway Bridge across Tampa Bay is just like Florida itself. It is a surprising blend of sunshine, ocean, and progress.

The Sunshine Skyway Bridge is a cable-stayed bridge. The roadway is suspended from 21 cables anchored to each side of two towers that bear the bridge's weight.

The bridge looks like two sailboats gliding above the sea. As vehicles travel across the bridge, they are 190 feet above the water. This provides drivers and riders an open and beautiful view of Tampa Bay.



### **Bridge Facts**

- Each cable is covered in a steel pipe that is 9 inches in diameter. The pipes are bright yellow to represent sunshine.
- The bridge has a 40-foot-wide roadway on each side of the cables.
- The bridge is 4.14 miles long.
- About 52,000 vehicles cross the bridge every day.



#### **Three Reads**

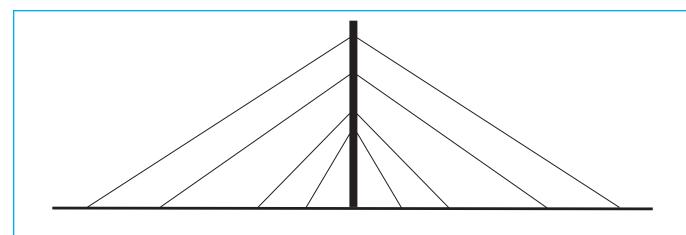
First, read the story to understand the situation.

Next, read to understand the math.

Then, read to ask what mathematical questions could be asked about the situation.

The cables on each side of the towers on the Sunshine Skyway Bridge meet in the middle of the towers to form angles.




#### Read the final questions. Make a plan to solve the problem.

The cables on each side of the towers on the Sunshine Skyway Bridge meet in the middle of the towers to form angles.

The angles in the drawing space below are like the angles on the Sunshine Skyway Bridge. Which one is the right angle? Which angles are greater than right angles? Which are smaller? Explain how you know.



Write, model, or draw to solve the problem.



Discuss with a partner or in a group.



Look at each of the 4 triangles formed by the bottom of the bridge and the 2 cables that connect to the tower at the same height. Use a ruler to measure their sides. What do you notice about the measurements of each triangle?



# **Measure Angles**



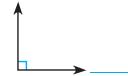
# Show What You Know

► Use a Metric Ruler Use a centimeter ruler to measure. Find the length in centimeters.

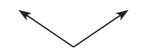
1.



centimeters


2.




centimeters

Describe Angles Describe the angle. Write less than right, right, or greater than right.

3.



4.



5.



**▶** Parts of a Whole Write a fraction for each shaded part.

6.



7.



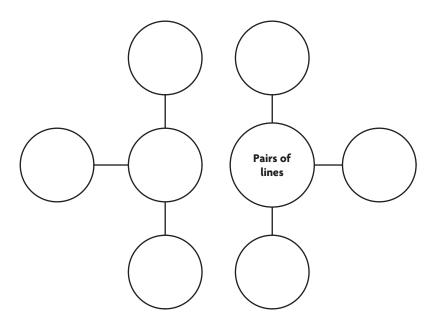
8.



9.



# **MATH** in the




The Sunshine Skyway Bridge crosses over Tampa Bay, Florida. Bridges and other building structures can model geometric figures. Look at the bridge in the photo. Describe the geometric figures you see. Then classify the labeled angles and triangle.



#### Visualize It

Complete the Bubble Map using review words with a ✓.



#### **Connect to Vocabulary**

#### **Review Words**

- ✓ intersecting lines
- ✓ line segment
- ✓ perpendicular lines
- ✓ parallel lines
- ✓ point
- √ ray
   right angle
   vertex

#### **Preview Words**

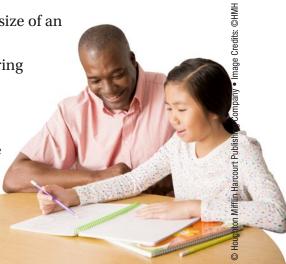
acute angle degree (°) obtuse angle protractor reflex angle straight angle

#### Understand Vocabulary

Draw a line to match each preview word with its definition.

- 1. protractor
- 2. degree (°)
- 3. right angle
- 4. acute angle
- 5. obtuse angle
- 6. reflex angle
- **7.** straight angle

- An angle that forms a square corner
- An angle that is less than a right angle


• A tool for measuring the size of an angle

• The unit used for measuring angles

• An angle larger than a straight angle

• An angle that forms a line

• An angle that is greater than a right angle and less than a straight angle



# **Exploring Angles**

(I Can ) identify and classify angles.

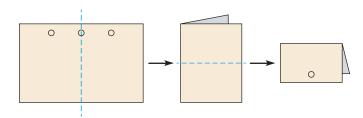
Florida's B.E.S.T.

- Geometric Reasoning 4.GR.1.1
- Mathematical Thinking & Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.6.1, MTR.7.1



# **■ UNLOCK the Problem**

You can name an angle by the vertex. When you name an angle using 3 points, the vertex is always the point in the middle.

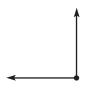

Angles are classified by the size of the opening between the rays.

A **straight angle** forms a line. A **right angle** forms a square An acute angle is less than a corner. right angle. A **reflex angle** is is larger than An **obtuse angle** is larger than a right angle. an obtuse angle.

# **Activity 1** Classify angles.

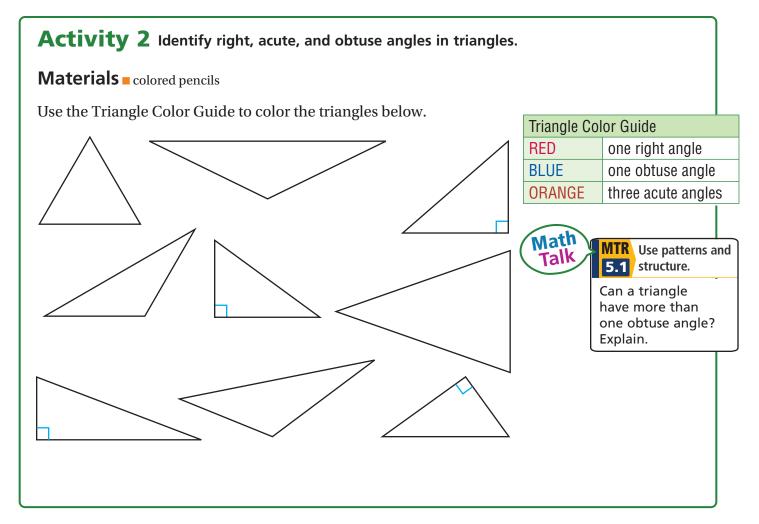
Materials paper

To classify an angle, you can compare it to a right angle.




Make a right angle by using a sheet of paper. Fold the paper twice evenly to model a right angle. Use the right angle to classify the angles below. Write acute, obtuse, right, or reflex.

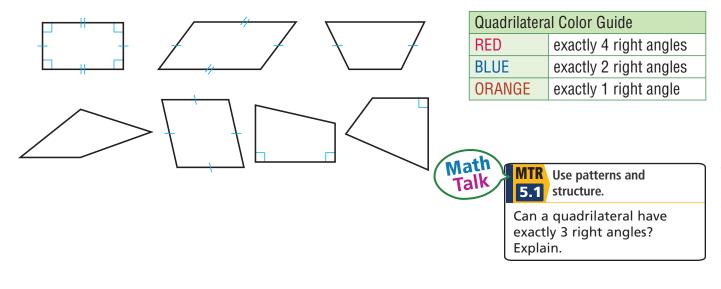





d.






O Houghton Mifflin Harcourt Publishing Company

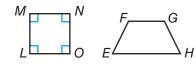


### **Try This!**

Identify right angles in quadrilaterals. Use the Quadrilateral Color Guide to color the quadrilaterals.

Materials ■ color pencils



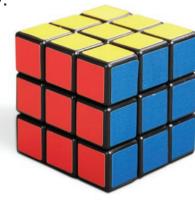

# **Share and Show**

Math Board

Identify the angles in each shape.

- 1. Name the triangle with one right angle. \_\_\_\_\_
- **2.** Name the triangle with one obtuse angle. \_\_\_\_\_
- **3.** Name the triangle with three acute angles.
- **4.** Name the quadrilateral with four right angles. \_\_\_\_\_
- **5.** Name the quadrilateral with two obtuse angles.






Identify the angle in each image.

6.



7.

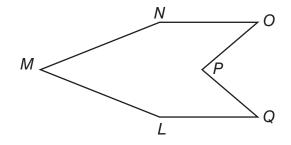


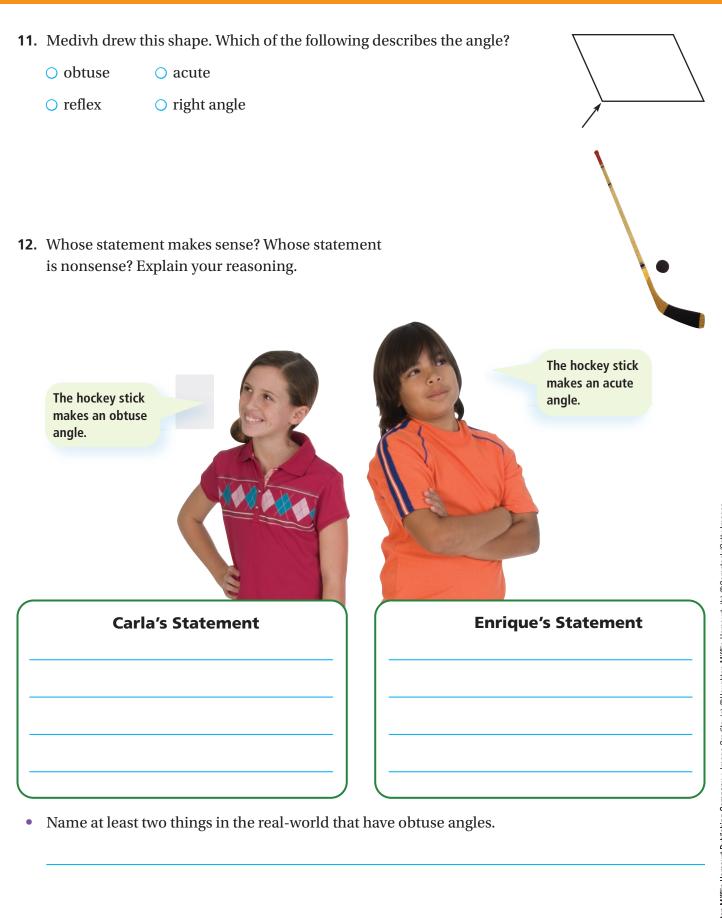
8.



Tell whether each angle is acute, right or obtuse.

**9.** ∠*O* is \_\_\_\_\_


∠*P* is \_\_\_\_\_


 $\angle Q$  is \_\_\_\_\_

**10.**  $\angle L$  is \_\_\_\_\_

∠*M* is \_\_\_\_\_

 $\angle N$  is \_\_\_\_\_





# **Exploring Angles**

**Go Online Interactive Examples** 

Classify the angles.

1.



2.





Circle at least one acute, obtuse and right angle. Explain.



# Problem Solving Real

5. Dwayna started exercising at noon. If the time she ended her workout creates a reflex angle, what time could her workout end? Draw the minute hand on the clock to show the time.







End

| <b>WRITE</b> Math | Explain how you know it's a |
|-------------------|-----------------------------|
| reflex angle.     |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |
|                   |                             |

#### **Lesson Check**

7. What type of angle is the alligator's mouth making? Explain.



**8.** Draw a shape with at least one acute angle and one obtuse angle. Label each angle.

# **Spiral Review**

- **9.** Write  $\frac{2}{3}$  and  $\frac{3}{4}$  as a pair of fractions with a common denominator.
- **10.** Raymond bought  $\frac{3}{4}$  of a dozen rolls. How many rolls did he buy?

11. List all the factors of 18.

12. Jonathan rode 1.05 miles on Friday, 1.5 miles on Saturday, 1.25 miles on Monday, and 1.1 miles on Tuesday. On which day did he ride the shortest distance?

# **Degrees**

(I Can ) estimate angle measurements using benchmarks.

**CONNECT** You can use what you know about angles and fractional parts of a circle to understand angle measurement. Angles are measured in units called degrees. Think of a circle divided into 360 equal parts. An angle that turns through  $\frac{1}{360}$  of the circle measures 1 degree.

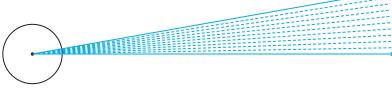


#### Florida's B.E.S.T.

- Geometric Reasoning 4.GR.1.2, 4.GR.1.1
- Mathematical Thinking & Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.6.1

#### **Math Idea**

The symbol for degrees is °.




### **∃** UNLOCK the Problem



The angle between two spokes on the bicycle wheel turns through  $\frac{10}{360}$  of a circle. What is the measure of the angle formed between the spokes?

**Example 1** Use fractional parts to find the angle measure.



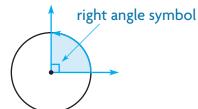
Each  $\frac{1}{360}$  turn measures \_\_\_\_\_ degree.

Ten  $\frac{1}{360}$  turns measure \_\_\_\_\_ degrees.

So, the measure of the angle between the spokes is



MTR Engage in discussions on 4.1 mathematical thinking.


How many degrees is the measure of an angle that turns through 1 whole circle? Explain.

What part of an angle does a spoke represent?



▲ The Penny Farthing bicycle was built in the 1800s.

# **Example 2** Find the measure of a right angle.



Think: Through what fraction of a circle

does a right angle turn? \_\_\_\_\_

**STEP 1** Write  $\frac{1}{4}$  as an equivalent fraction with 360 in the denominator.

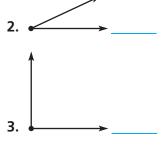
$$\frac{1}{4} = \frac{1}{360}$$

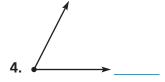
$$\frac{1}{4} = \frac{1}{360}$$
 Think:  $4 \times 9 = 36$ , so  $4 \times \underline{\hspace{1cm}} = 360$ .

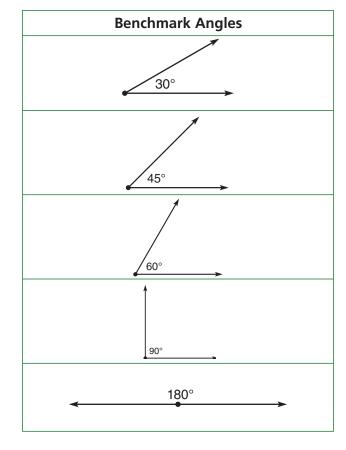
**STEP 2** Write  $\frac{90}{360}$  in degrees.

An angle that turns through  $\frac{1}{360}$  of a circle measures \_\_\_\_\_.

An angle that turns through  $\frac{90}{360}$  of a circle measures \_\_\_\_\_.


So, a right angle measures \_\_\_\_\_.


#### Remember


To write an equivalent fraction, multiply the numerator and denominator by the same factor.

**Try This!** Estimate the measure of each angle using the **benchmark angles**. Benchmark angles are widely recognized angles that help you determine if your angle measurements and estimates are reasonable.

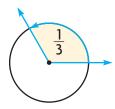








# **Share and Show**

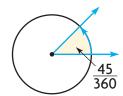


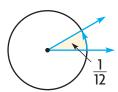

**1.** Find the measure of the angle.

Through what fraction of a circle does the angle turn?

$$\frac{1}{3} = \frac{1}{360}$$

**Think:** 
$$3 \times 12 = 36$$
, so  $3 \times ___ = 360$ .



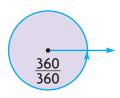


through what fraction of a circle does it turn? Explain.

So, the measure of the angle is

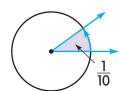
Tell the measure of the angle in degrees.

**⊘** 2.






# On Your Own

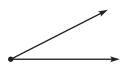



Tell the measure of the angle in degrees.

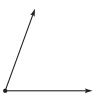
4.

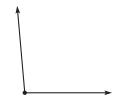


5.




Estimate the measure of each angle using benchmark angles: 30°, 45°, 60°, 90°, 180°.


6.




7.



8.





**10. MTR** Is this an obtuse angle? Explain.



11. Amon cut a circular pizza into 8 equal slices. He removed 2 of the slices of pizza. What is the measure of the angle made by the missing slices of pizza?

# Problem Solving · Applications Res



**12.** Ava started reading at 3:30 p.m. She stopped for a snack at 4:15 p.m. During this time, through what fraction of a circle did the minute hand turn? How many degrees did the minute hand turn?







a. What are you asked to find? \_\_\_\_

**b.** What information can you use to find the fraction of a circle through which the minute hand turned?

c. How can you use the fraction of a circle through which the minute hand turned to find how many degrees it turned?

**d.** Show the steps to solve the problem.

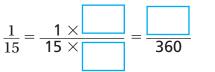
**STEP 1** 
$$\frac{3 \times }{4 \times } = \frac{?}{360}$$

**STEP 2** 
$$\frac{3 \times 90}{4 \times 90} = \frac{}{360}$$

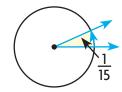
**e.** Complete the sentences.

From 3:30 p.m. to 4:15 p.m., the minute hand

made a turn.


20

24


30

The minute hand turned \_\_\_\_\_ degrees.

**13.** An angle represents  $\frac{1}{15}$  of a circle. Select the number to show how to find the measure of the angle in degrees.

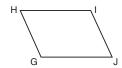


The angle measures.



# **Degrees**

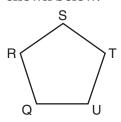
**Go Online** 


**Interactive Examples** 

**1.** Sterling drew a triangle *CDE*, as shown below.



Which is the closest to the measure of  $\angle D$ ?

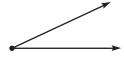

- OA. 45°
- OB. 90°
- OC. 180°
- OD. 360°
- **2.** Colleen drew a parallelogram *GHIJ*, as shown below.



Which is the closest to the measure of  $\angle G$ ?

- OA. 45°
- OB. 90°
- OC. 180°
- OD. 360°

**3.** Tillman drew a polygon *QRSTU*, as shown below.




Which is the closest to the measure of  $\angle T$ ?

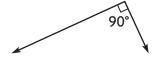
- OA. 45°
- OB. 90°
- OC. 180°
- OD. 360°

Estimate the measure of each angle using benchmark angles: 30°, 45°, 60°, 90°, 180°.

4.



5.






Classify the angle. Write acute, obtuse, right, reflex or straight.



8.





# Problem Solving Real World

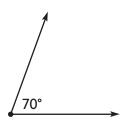
that measures 90 degrees.

Ann started reading at 4:00 p.m. and finished at 4:20 p.m.

10. Through what fraction of a circle did the minute hand turn?

**11. WRITE** Math Give an example from everyday life of an angle








End

### **Lesson Check**

**12.** What kind of angle is shown?



13. How many degrees are in an angle that turns through  $\frac{1}{3}$  of a circle? What type of angle is it?

# **Spiral Review**

- 14. Mae bought 15 football cards and 18 baseball cards. She separated them into 3 equal groups. How many sports cards are in each group?
- **15.** Each part of a race is  $\frac{1}{10}$  mile long. Marsha finished 5 parts of the race. How far did Marsha race?

- **16.** Jeff said his city got  $\frac{11}{3}$  inches of snow. Write **17.** Xia ran  $\frac{3}{4}$  mile. Write the distance Xia ran as this fraction as a mixed number.
  - a decimal.



# **∃** UNLOCK the Problem

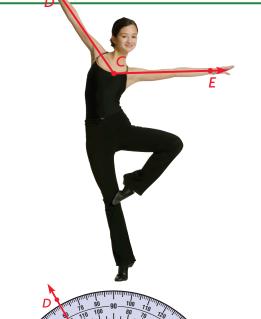
Emma wants to make a clay sculpture of her daughter as she appears in the photo from her dance recital. How can she measure  $\angle DCE$ , or the angle formed by her daughter's arms?

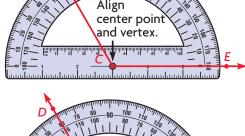
A **protractor** is a tool for measuring the size of an angle.

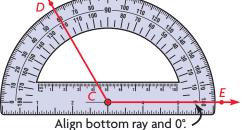
**Activity** Measure ∠*DCE* using a protractor.

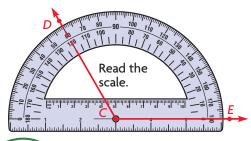
Materials ■ protractor

**STEP 1** Place the center point of the protractor on vertex C of the angle.


STEP 2 Align the 0° mark on the scale of the protractor with ray CE.


**STEP 3** Find where ray *CD* intersects the same scale. Read the angle measure on that scale. Extend the ray if you need to.


$$m \angle DCE =$$
 Read  $m \angle DCE$  as "the measure of angle  $DCE$ ".


So, the angle formed by Emma's daughter's

arms is \_\_\_\_\_.



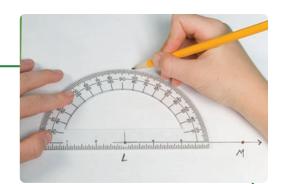






Math

MTR Engage in discussions on 4.1 mathematical thinking.


Can you line up either ray of the angle with the protractor when measuring? Explain.

### **Activity** Draw $\angle KLM$ with a measure of 82°.

Materials protractor

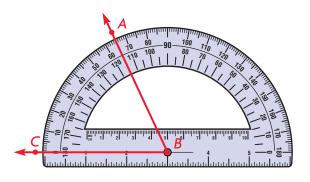
- **STEP 1** Use the straight edge of the protractor to draw and label ray *LM*.
- **STEP 2** Place the center point of the protractor on point *L*. Align ray LM with the 0° mark on the protractor.
- STEP 3 Using the same scale, mark a point at 82°. Label the point K.

**STEP 4** Use the straight edge of the protractor to draw ray LK.



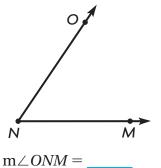
# Share and Show

**Board** 

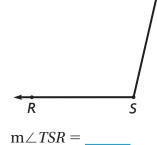

**1.** Measure  $\angle ABC$ .

Place the center of the protractor on point \_\_\_\_\_.

Align ray *BC* with \_\_\_\_\_.


Read where intersects the same scale.

So,  $m \angle ABC$  is .




Use a protractor to find the angle measure.

2.



**⊘**3.

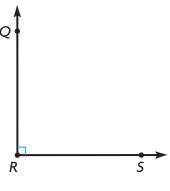


**Common Error** 

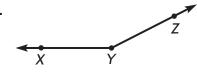
Be sure to use the correct scale on the protractor. Ask yourself: Is the measure reasonable?

Use a protractor to draw the angle.

**4.** 170°


**⊘ 5**. 78°




MTR Engage in discussions on 4.1 mathematical thinking.

Describe how drawing and measuring angles are similar. Use a protractor to find the angle measure.

6.



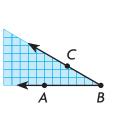
**7**.

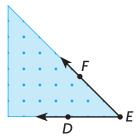


 $m\angle QRS = \underline{\hspace{1cm}}$ 

$$m \angle XYZ =$$

Use a protractor to draw the angle.


**8.** 115°


**9.** 67°

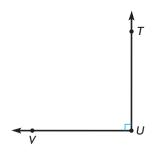
Draw an example of each. Label the angle with its measure.

10. an acute angle

- 11. an obtuse angle
- **12.** Elizabeth is making a quilt with scraps of fabric. What is the difference between  $m \angle ABC$  and  $m \angle DEF$ ?





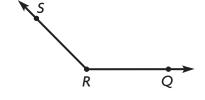

**13.** Draw an angle with a measure of 0°. Describe your drawing.



# Problem Solving · Applications work



**14.** Hadley wants to divide this angle into three angles with equal measure. What will the measure of each angle be?



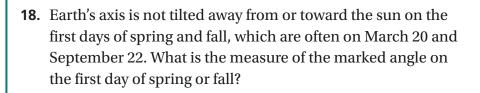

- **15.** MTR Tracy measured an angle as 50° that was actually 130°. Explain her error.
- **16.** Choose the word and angle measure to complete a true statement about  $\angle QRS$ .

$$\angle QRS$$
 is a(n) acute obtuse right

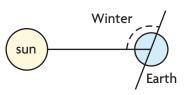
angle that has a measure of

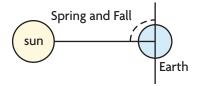





#### **Connect to Science**

#### **Earth's Axis**


Earth revolves around the sun yearly. The Northern Hemisphere is the half of Earth that is north of the equator. The seasons of the year are due to the tilt of Earth's axis.

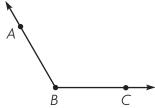

#### Use the diagrams and a protractor for problems 17-18.

17. In the Northern Hemisphere, Earth's axis is tilted away from the sun on the first day of winter, which is often on December 21. What is the measure of the marked angle on the first day of winter, the shortest day of the year?

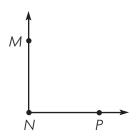


#### **Northern Hemisphere**

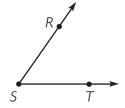





# **Measure and Draw Angles**


Go Online
Interactive Examples

Use a protractor to find the angle measure.





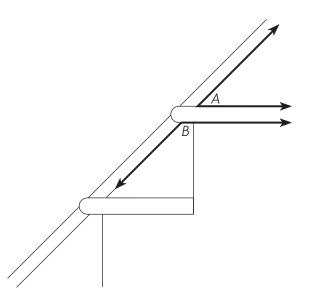

2.



3.



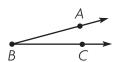
$$m\angle ABC = \underline{120^{\circ}}$$


$$m\angle RST = \underline{\hspace{1cm}}$$

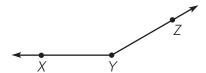
Use a protractor to draw the angle.

# Problem Solving Real World

The drawing shows the angles a stair tread makes with a support board along a wall. Use your protractor to measure the angles.


- **6.** What is the measure of  $\angle A$ ?
- **7.** What is the measure of  $\angle B$ ?




**8. WRITE** *Math* Find an angle at home. Measure the angle. Record the measure. Classify the angle.

#### **Lesson Check**

**9.** What is the measure of  $\angle ABC$ ?



**10.** What is the measure of  $\angle XYZ$ ?



### **Spiral Review**

- 11. Dante earned \$1,472 during the 4 weeks he had his summer job. If he earned the same amount each week, how much did he earn each week?
- **12.** Arthur baked  $1\frac{7}{12}$  dozen muffins. Nina baked  $1\frac{1}{12}$  dozen muffins. How many dozen muffins did they bake?

**13.** Trisha drew the figure below. What figure did she draw?



14. Measure and describe the turn shown by the angle. Be sure to tell about the size and direction of the turn.



Mathematical Thinking & Reasoning

MTR.1.1, MTR.2.1, MTR.3.1, MTR.4.1

# **Join and Separate Angles**


( I Can ) determine the measure of an angle separated into parts.

# Investigate

Materials ■ construction paper ■ scissors ■ protractor

- **A.** Use construction paper. Draw an angle that measures exactly 70°. Label it  $\angle ABC$ .
- **B.** Cut out  $\angle ABC$ .
- **C.** Separate  $\angle ABC$  by cutting it into two parts. Begin cutting at the vertex and cut between the rays.

What figures did you form? \_\_\_\_\_



**E.** Find the sum of the angles you formed.





MTR Engage in discussions on 4.1 mathematical thinking.

You can think of  $\angle ABC$ as the whole and the two angles you formed as the parts of the whole.

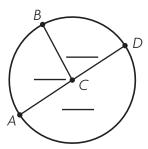
#### **Draw Conclusions**

**1.** What if you cut  $\angle ABC$  into two different angles? What can you conclude about the sum of the measures of these two angles? Explain.

**2.** Seth cut  $\angle ABC$  into 3 parts. Draw a model that shows two different ways he could have separated his angle.

**3.** Write a sentence that compares the measure of an angle to the sum of its parts.

### **Make Connections**


Materials ■ protractor

You can write the measure of the angles shown in a circle as a sum.

**STEP 1** Use a protractor to find the measure of each angle.

STEP 2 Label each angle with its measure.

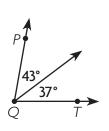
**STEP 3** Write the sum of the angle measures as an equation.



MTR Engage in discussions on 4.1 mathematical thinking.

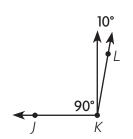
Math

Talk


Describe the angles shown in the circle above using the words *whole* and *part*.

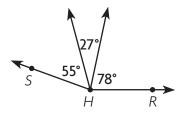
# **Share and Show**

Math Board


Add to find the measure of the angle. Write an equation to record your work.

1.

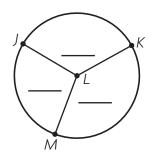



m∠*PQT*−

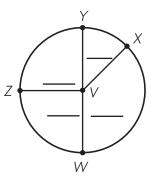
**⊘**2.



m∠*JKL* – \_\_\_\_\_

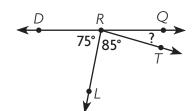

3.




m∠*RHS* – \_\_\_\_\_

Use a protractor to find the measure of each angle. Label each angle with its measure. Write the sum of the angle measures as an equation.

**₫4**.




5.



# On Your Own Real World

**6.** MTR What is  $m \angle QRT$ ?



7. Look back at Problem 1. Suppose you joined an angle measuring  $10^{\circ}$  to  $\angle PQT$ . Draw the new angle, showing all three parts. What type of angle is formed?

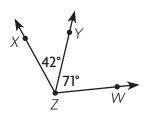
# UNLOCK the Problem Real World



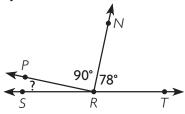
**8.** Stephanie, Kay, and Shane each ate an equal-sized piece of a pizza. The measure of the angle of each piece was 45°. When the pieces were together, what is the measure of the angle they formed?



a. What are you asked to find? \_\_\_\_




**b.** What information do you need to use?

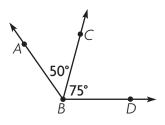

c. Tell how you can use addition to solve the problem.

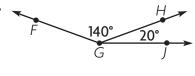
**d.** Complete the sentence. The three pieces of pizza formed a \_\_\_\_\_ angle.

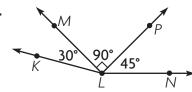
**9.** What is the measure of  $\angle XZW$ ? Write an equation to record your work.



**10.** What is  $m \angle PRS$ ? Use equations to explain and check your answer.



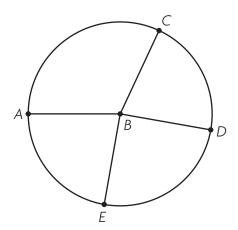


# **Join and Separate Angles**


Add to find the measure of the angle. Write an equation to record your work.

**Go Online Interactive Examples** 

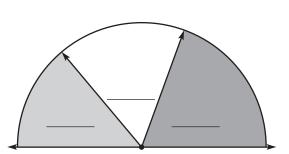
1.







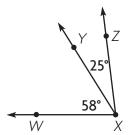

 $50^{\circ} + 75^{\circ} = 125^{\circ}$ 


$$m\angle ABD =$$
 **125**°

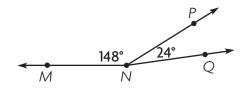
Use a protractor to find the measure of each angle in the circle.



# Problem Solving Real


- 8. Ned made the design at the right. Use a protractor. Find and write the measure of each of the 3 angles.
- **9.** Write an equation to find the measure of the total angle.




**10. WRITE** Math How can you use addition and subtraction to put together and separate measures of an angle and its parts?

#### **Lesson Check**

**11.** What is the measure of  $\angle WXZ$ ?



12. Write an equation that you can use to find the m $\angle MNQ$ .

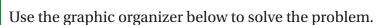


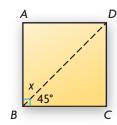
### **Spiral Review**

- **13.** Jose bought 6 packages of envelopes. Each package contains 125 envelopes. How many envelopes did he buy?
- **14.** Bill hiked  $\frac{3}{10}$  mile on the Lake Trail. Then he hiked  $\frac{5}{10}$  mile on the Rock Trail to get back to where he started. How many miles did he hike?

- 15. Rylan drew a quadrilateral with 4 right angles and 4 sides with the same length. What figure best describes his quadrilateral?
- 16. How many degrees are in an angle that turns through  $\frac{3}{4}$  of a circle?

# **Unknown Angle Measures**


(I Can) solve real-world problems involving unknown whole-number angle measures using a variety of strategies.




# ■ UNLOCK the Problem



Mr. Tran is cutting a piece of kitchen tile as shown at the right. He needs tiles with 45° angles to make a design. After the cut, what is the angle measure of the part left over? Can Mr. Tran use both pieces in the design?

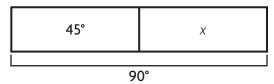




#### What do I need to find?

I need to find

#### What information do I need to use?


I can use the measures of the angles I know.

#### How will I use the information?

I can draw a bar model and use the information to

#### Solve the Problem

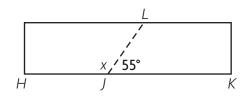
I can draw a bar model to represent the problem. Then I can write an equation to solve the problem.



$$m\angle ABD + m\angle CBD = m\angle ABC$$

The 
$$m \angle ABD = \underline{\hspace{1cm}}$$
.

Since both tiles measure , Mr. Tran can use both pieces in the design.




MTR Engage in discussions on 4.1 mathematical thinking.

What other equation can you write to solve the problem? Explain.

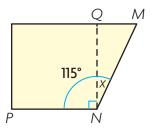
# **Try Another Problem**

Marisol is building a frame for a sandbox, but the boards she has are too short. She must join two boards together to build a side as shown. At what angle did she cut the first board?



| Read the Problem        |                                    |                                 |  |  |  |
|-------------------------|------------------------------------|---------------------------------|--|--|--|
| What do I need to find? | What information do I need to use? | How will I use the information? |  |  |  |
|                         | Solve the Problem                  |                                 |  |  |  |
|                         |                                    |                                 |  |  |  |
|                         |                                    |                                 |  |  |  |
|                         |                                    |                                 |  |  |  |
|                         |                                    |                                 |  |  |  |
|                         |                                    |                                 |  |  |  |

Explain how you can check the answer to the problem.


# **Share and Show**



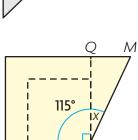
√ 1. Laura cuts a square out of scrap paper as shown.

What is the angle measure of the piece left over?

**First,** draw a bar model to represent the problem.



**Next,** write the equation you need to solve.

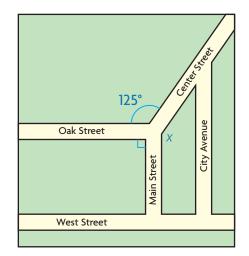

Last, find the angle measure of the piece left over.

 $m \angle MNQ =$ 

So, the angle measure of the piece left over is \_\_\_\_\_.

✓ 2. Jackie trimmed a piece of scrap metal to make a straight edge as shown. What is the measure of the piece she trimmed off?






225°

# On Your Own

**3.** What if Laura cut a smaller square as shown? Would  $m \angle MNQ$  be different? Explain.

**4.** The map shows Marco's paper route. When Marco turns right onto Center Street from Main Street, what degree turn does he make? **Hint:** Draw a dashed line to extend Oak Street to form a 180° angle.



# Problem Solving · Applications Real World

other angle? Explain.

Demonstrate Your Thinking

**6.** Look back at Problem 5. Write a similar problem about two angles that form a right angle.

**7.** Three angles have a combined measure of 285°. Two of the angles measure 75° and 120°. Write an equation to find the measure of the third angle.

**8.** Look back at Problem 7. Suppose Kya adds a fourth angle so the combined measure is 310°. Is the measure of the fourth angle less than or greater than the measure of the third angle? Explain.

9. It measures greater than 0° and less than 90°.

**10.** Two angles,  $\angle A$  and  $\angle B$ , form a straight angle.  $\angle A$  measures 65°. For numbers 10a–10c, select True or False for the statement.

10a.  $\angle B$  is an acute angle.

O True

O False

10b. The equation  $180^{\circ} - 65^{\circ} = x^{\circ}$  can be used to find the measure of  $\angle B$ .

True

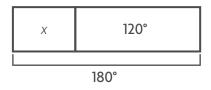
False

10c. The measure of  $\angle B$  is 125°.

O True

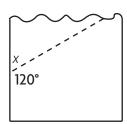
rue OFalse

# **Unknown Angle Measures**

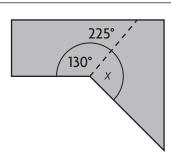

**Go Online Interactive Examples** 

Solve each problem. Draw a diagram to help.

1. Wayne is building a birdhouse. He is cutting a board as shown. What is the angle measure of the piece left over?


Draw a bar model to represent the problem.

What is the angle measure of the piece left over?

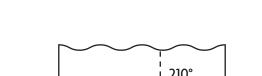



60°

$$x + 120^{\circ} = 180^{\circ}$$
  
 $x = 180^{\circ} - 120^{\circ}$   
 $x = 60^{\circ}$ 

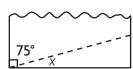


2. An artist is cutting a piece of metal as shown.




**3. WRITE** Math Give one example of when you would draw a diagram to solve an angle measurement problem.

O Houghton Mifflin Harcourt Publishing Company

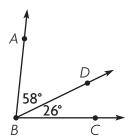

#### **Lesson Check**

**4.** Angelo cuts a triangle from a sheet of paper as shown. What is the measure of  $\angle x$  in the triangle?



5. Cindy cuts a piece of wood as shown. What

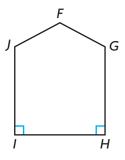
is the angle measure of the piece left over?




210°

# **Spiral Review**

- **6.** Tyronne worked 21 days last month. He earned \$79 each day. How much did Tyronne earn last month?
- 7. Meg inline skated for  $\frac{7}{10}$  mile. Write this distance as a decimal.


- **8.** Kerry ran  $\frac{3}{4}$  mile. Sherrie ran  $\frac{1}{2}$  mile. Marcie ran  $\frac{2}{3}$  mile. List the friends in order from who ran the least distance to who ran the greatest distance.
- **9.** What is the measure of  $\angle ABC$ ?



# **Chapter Review**

1. Tell whether each angle is acute, right, or obtuse.

∠*H* is \_\_\_\_\_



**2.** Match the measure of each  $\angle C$  with the measure of  $\angle D$  that forms a straight angle.

 $\angle C$ 

 $\angle D$ 

• 145°

122° •

• 75°

35° •

• 148°

62°

• 58°

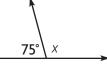
105° •

• 55°

• 118°

**3.** Katie drew an obtuse angle. Which could be the measure of the angle she drew? Mark all that apply.

**(A)** 35°


**C**) 180°

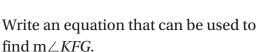
**B** 157°

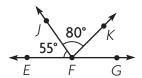
**(D)** 92°

**4.** Using the ray, draw another ray with the same vertex to create a right angle.

**5.** Renee drew the figure shown. For Problems 5a–5c, choose Yes or No to tell whether the statement is true.



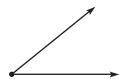

- 5a. The measure of a straight angle is 180°.
- Yes
- 5b. To find the measure of *x*,
  Renee can subtract 75°
  from 180°.
- Yes No


- 5c. The measure of x is 115°.
- Yes
- O No

 $\circ$  No

**6.** Trey drew this figure with a protractor.








**Part B** 

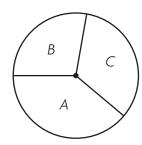
What is the measure of  $\angle KFG$ ? Describe how you solved the equation and how you can check your answer.

**7.** Use a protractor to find the measure of the angle. Classify it.



The angle measures \_\_\_\_\_.

It is a/an \_\_\_\_\_ angle.


8. Alex drew this angle.
Which describes the angle?
Mark all that apply.



- A right angle
- **C** acute angle
- (B) less than 90°
- (D) more than 90°
- 9. Describe the angle shown in the image. How would you classify it?

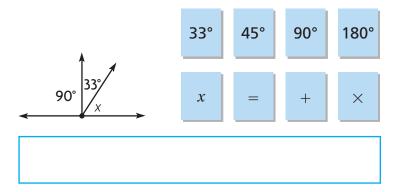


**10.** Use a protractor to find the measure of each angle. Write each angle and its measure in a box ordered by the measure of the angles from least to greatest.



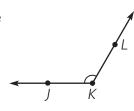
Angle:

Measure:


Angle:

Measure:

Angle:


Measure:

**11.** Use numbers and symbols on the tiles to write an equation that can be used to find the measure of the unknown angle.

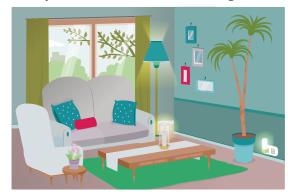


What is the measure of the unknown angle? \_\_\_\_\_

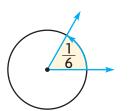
**12.** Choose the word and angle measure to complete a true statement about ∠*JKL*.



 $\angle JKL$  is a(n) of


acute obtuse right

angle that has a measure of


120° 135°

 $60^{\circ}$ 

**13.** Circle at least one acute, obtuse, straight, and right angle in the picture. Choose two to explain how you can use benchmark angles to estimate angle size.



**14.** An angle turns through  $\frac{1}{6}$  of a circle. What is the measure of the angle?



- **15.** Write the letter for each angle measure in the correct box.
  - A
- 125°
- B
- **B** 90°
- **(C)** 
  - 180°
- D

 $30^{\circ}$ 

- **E** 45°
- **(F)**
- 95°

acute

obtuse

right

straight

**16.** For Problems 16a and 16b, circle the words that make a true statement about the figure.

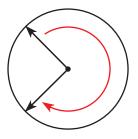



Figure 1 an acute

an obtuse

Figure 2

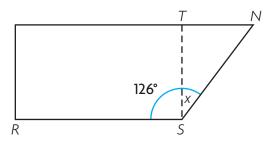
16a. Figure 1 is a reflex

a right

a straight an acute

16b. Figure 2 is

a reflex


an obtuse

angle.

angle.

a right a straight

**17.** Melanie cuts a rectangle out of a piece of scrap paper as shown. She wants to calculate the angle measure *x* of the piece that is left over.



#### **Part A**

Draw a bar model to represent the problem.

#### Part B

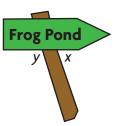
Write and solve an equation to find x.

The angle measures \_\_\_\_\_.

- **18.** Two angles,  $\angle A$  and  $\angle B$ , form a right angle.  $\angle A$  measures 32°. For Problems 18a–18c, choose True or False for the statement.
  - 18a.  $\angle B$  is an acute angle.

- True
- False

- 18b. The equation  $180^{\circ} 32^{\circ} = x$  can be used to find the
- True
- False


- measure of  $\angle B$ .
- 18c. The measure of  $\angle B$  is 58°.
- True
- False
- **19.** A circle is divided into parts. Which sum could represent the angle measures that make up the circle? Mark all that apply.

$$(B)$$
 25° + 40° + 80° + 105° + 110°

$$\bigcirc$$
 33° + 82° + 111° + 50° + 84°

$$\bigcirc$$
 40° + 53° + 72° + 81° + 90° + 34°

**20.** Use a protractor to find the measures of the unknown angles.



$$m \angle x = \underline{\hspace{1cm}}$$

$$m \angle y = \underline{\hspace{1cm}}$$

What do you notice about the measures of the unknown angles? Is this what you would have expected? Explain your reasoning.